
Microservices and DevOps

DevOps and Container Technology
NoSQL

Henrik Bærbak Christensen



Motivation

• Relational Databases has ruled the ‘persistent storage’ 

universe for decades

– XML and Object-oriented databases were hot – and fizzled out…

• Why did NoSQL databases then succeed?

– RDB’s did not scale well for massive, web, data

• Unstructured and evolving data

• Massive amounts of data required scaling fast

• Consistency makes RDB’s slow and increase likelihood of failures

– Adopted by Google, Twitter, Facebook…

• BigTable (Google) began around 2004

CS@AU Henrik Bærbak Christensen 2



Key features

• NoSQL: ”Not Only SQL” / Not Relational

– Horizontal scaling of simple operations over many servers

– Replication and partitioning data over many servers

– Simple call level interface (contrast: SQL)

– Weaker concurrency model than ACID

– Efficient use of RAM and dist. indexes for storage

– Ability to dynamically add new attributes to records

• Architectural Drivers:

– Performance

– Scalabilty

[Cattel, 2010]

CS@AU Henrik Bærbak Christensen 3



Clarifications

• NoSQL focus on

– Simple operations

• Key lookup, read/write of one or a few records

• Opposite: Complex joins over many tables (SQL)

• NoSQL joins are handled client side !!!

– Why is the argument for that?

– Horizontal scaling

• Many servers with no RAM nor disk sharing

– Any server may serve a read request => balances load

• Commodity hardware

– Cheap but more prone to failures

CS@AU Henrik Bærbak Christensen 4



NoSQL DB Types



Basic types

• Four types

– Key-value stores

• Memcache, Riak, Redis, …

– Document stores

• MongoDB, …

– Extensible record (Hu: Column)

• Cassandra, Google BigTable

– Graph stores

• Neo4J

CS@AU Henrik Bærbak Christensen 6



Overview by Hu

CS@AU Henrik Bærbak Christensen 7



Key-value

• Basically the Java Map<KeyType, ValueType> 

datastructure:

– Map.put(”pid01-2012-12-03-11-45”, measurement);

– m = Map.get(”pid01-2012-12-03-11-45”);

• Schema: Any value under any key…

• Supports:

– Automatic replication

– Automatic sharding

– Both using hashing on the key

• Only lookup using the (primary) key
CS@AU Henrik Bærbak Christensen 8

Often memory based, with 
periodic flushing to disk.
Thus RAM may become a 

bottleneck!



MVCC

• Multi-Version Concurrency Control

– To avoid reading an item while others are updating it

– To avoid classic concurrency ‘locking’

• Data update

– No overwrite but…

– Mark old version as obsolete

– Add new version with timestamp of entry

• Periodic sweep to erase obsolete data

– Point in time consistent read view

• Read with a timestamp

CS@AU Henrik Bærbak Christensen 9



Document

• Stores ”documents”

– MongoDB: JSON objects.

– Stronger queries, also in

document contents

– Schema: Any JSON object may be stored!

– Atomic updates, otherwise no concurrency control

• Supports

– Master-slave replication, automatic failover and recovery

– Automatic sharding

• Range-based, on shard key (like zip-code, CPR, etc.)

CS@AU Henrik Bærbak Christensen 10



Extensible Record/Column

• First kid on the block: Google BigTable

• Datamodel

– Table of rows and columns

• Scalability model: splitting both on rows and columns

• Row: (Range) Sharding on primary key

• Column: Column groups – domain defined clustering

– No Schema on the columns, change as you go

– Generally memory-based with periodic flushes to disk

CS@AU Henrik Bærbak Christensen 11



(Graph)

• Neo4J

CS@AU Henrik Bærbak Christensen 12



CAP Theorem



Reviewing ACID

• Basic RDBM teaching talks on ACID

• Atomicity

– Transaction: All or none succeed

• Consistency

– DB is in valid state before and after transaction

• Isolation

– N transactions executed concurrently = N executed in sequence

• Durability

– Once a transaction has been committed, it will remain so (even in 

the event of power loss, crash)

CS@AU Henrik Bærbak Christensen 14



CAP

• Eric Brewer: only get two of the three in scaled system:

• Consistency

– Reads and writes see the same valid and consistent state

• ”Every read receives the most recent write or an error” [wikipedia]

• Availability

– Able to serve when it’s needed

• ”Every request receives a (non-error) response – without the guarantee that it 

contains the most recent write”

• Partition tolerance

– Operation will complete, even if components are unavailable

• ”The system continues to operate despite an arbitrary number of messages 

being dropped (or delayed) by the network between nodes”

CS@AU Henrik Bærbak Christensen 15



Horizontal Scaling: P taken

• We have already taken P, so we have to relax either

– Consistency

– Availability

• RDBM prefer consistency over availability

• NoSQL prefer availability over consistency

– replacing it with eventual consistency

CS@AU Henrik Bærbak Christensen 16



Achieving ACID

• Two-phase Commit

1. All partitions pre-commit, report result to master

2. If success, master tells each to commit; else roll-back

• Guaranty consistency, but availability suffer

• Example

– Two partitions, 99.9% availability

• => 99.92 = 99.8% (+43 min down every month)

– Five partitions: 

• 99,5% (36 hours down time in all)

CS@AU Henrik Bærbak Christensen 17



BASE

• Replace ACID with BASE

• BA: Basically available

• S: Soft state

• E: Eventual consistent

• Availability achieved by partial failures not leading to 

system failures

– In two-phase commit, what would master do if one partition does 

not respond?

CS@AU Henrik Bærbak Christensen 18



Eventual Consistency

• So what does this mean?

– Upon write, an immediate read may retrieve the old value – or not 

see the newest added item!

• Why? Gets data from a replica that is not yet updated…

– Eventual consistency: 

• Given sufficiently long period of time which no updates, all replicas 

are consistent, and thus all reads consistently return the same 

data…

• System always available, but state is ‘soft’ / cached

CS@AU Henrik Bærbak Christensen 19



Discussion

• Web applications

– Is it a problem that a facebook update takes some minutes to 

appear at my friends?

• As Newman points out [p. 236]

– Consistency is a ‘computerish’ thing, usually the real world is 

pretty full of issues that invalidate consistency anyway

• While picking the The Brakes album from inventory of 100 records, 

the staff knocks on album on the floor and accidentally breaks it. 

Computer says 99 copies left, inventory contains 98. Who is right?

– And real world counterparts have correcting mechanisms

• Sorry, we cannot deliver at the promised date…

CS@AU Henrik Bærbak Christensen 20



Summary

• NoSQL – born to address real issues arriving from 

modern web applications

– Horizontal scaling on commodity hardware

– Sacrifices Consistency for Availability

• CAP theorem states that this is the trade-off

• Solution: BASE rather than ACID

– Or rather ‘eventual consistency’

– Types

• Key-value, documents, column

– Schema less – or rather dynamic schemas

CS@AU Henrik Bærbak Christensen 21


